from owrx.kiss import KissDeframer from owrx.map import Map, LatLngLocation from owrx.bands import Bandplan from owrx.metrics import Metrics, CounterMetric from datetime import datetime, timezone import re import logging logger = logging.getLogger(__name__) # speed is in knots... convert to metric (km/h) knotsToKilometers = 1.852 feetToMeters = 0.3048 milesToKilometers = 1.609344 inchesToMilimeters = 25.4 def fahrenheitToCelsius(f): return (f - 32) * 5 / 9 # not sure what the correct encoding is. it seems TAPR has set utf-8 as a standard, but not everybody is following it. encoding = "utf-8" # regex for altitute in comment field altitudeRegex = re.compile("(^.*)\\/A=([0-9]{6})(.*$)") # regex for parsing third-party headers thirdpartyeRegex = re.compile("^([a-zA-Z0-9-]+)>((([a-zA-Z0-9-]+\\*?,)*)([a-zA-Z0-9-]+\\*?)):(.*)$") # regex for getting the message id out of message messageIdRegex = re.compile("^(.*){([0-9]{1,5})$") def decodeBase91(input): base = decodeBase91(input[:-1]) * 91 if len(input) > 1 else 0 return base + (ord(input[-1]) - 33) def getSymbolData(symbol, table): return { "symbol": symbol, "table": table, "index": ord(symbol) - 33, "tableindex": ord(table) - 33, } class Ax25Parser(object): def parse(self, ax25frame): control_pid = ax25frame.find(bytes([0x03, 0xF0])) if control_pid % 7 > 0: logger.warning("aprs packet framing error: control/pid position not aligned with 7-octet callsign data") def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i : i + n] return { "destination": self.extractCallsign(ax25frame[0:7]), "source": self.extractCallsign(ax25frame[7:14]), "path": [self.extractCallsign(c) for c in chunks(ax25frame[14:control_pid], 7)], "data": ax25frame[control_pid + 2 :], } def extractCallsign(self, input): cs = bytes([b >> 1 for b in input[0:6]]).decode(encoding, "replace").strip() ssid = (input[6] & 0b00011110) >> 1 if ssid > 0: return "{callsign}-{ssid}".format(callsign=cs, ssid=ssid) else: return cs class WeatherMapping(object): def __init__(self, char, key, length, scale=None): self.char = char self.key = key self.length = length self.scale = scale def matches(self, input): return self.char == input[0] and len(input) > self.length def updateWeather(self, weather, input): def deepApply(obj, key, v): keys = key.split(".") if len(keys) > 1: if not keys[0] in obj: obj[keys[0]] = {} deepApply(obj[keys[0]], ".".join(keys[1:]), v) else: obj[key] = v try: value = int(input[1 : 1 + self.length]) if self.scale: value = self.scale(value) deepApply(weather, self.key, value) except ValueError: pass remain = input[1 + self.length :] return weather, remain class WeatherParser(object): mappings = [ WeatherMapping("c", "wind.direction", 3), WeatherMapping("s", "wind.speed", 3, lambda x: x * milesToKilometers), WeatherMapping("g", "wind.gust", 3, lambda x: x * milesToKilometers), WeatherMapping("t", "temperature", 3, fahrenheitToCelsius), WeatherMapping("r", "rain.hour", 3, lambda x: x / 100 * inchesToMilimeters), WeatherMapping("p", "rain.day", 3, lambda x: x / 100 * inchesToMilimeters), WeatherMapping("P", "rain.sincemidnight", 3, lambda x: x / 100 * inchesToMilimeters), WeatherMapping("h", "humidity", 2), WeatherMapping("b", "barometricpressure", 5, lambda x: x / 10), WeatherMapping("s", "snowfall", 3, lambda x: x * 25.4), ] def __init__(self, data, weather={}): self.data = data self.weather = weather def getWeather(self): doWork = True weather = self.weather while doWork: mapping = next((m for m in WeatherParser.mappings if m.matches(self.data)), None) if mapping: (weather, remain) = mapping.updateWeather(weather, self.data) self.data = remain doWork = len(self.data) > 0 else: doWork = False return weather def getRemainder(self): return self.data class AprsLocation(LatLngLocation): def __init__(self, data): super().__init__(data["lat"], data["lon"]) self.data = data def __dict__(self): res = super(AprsLocation, self).__dict__() for key in ["comment", "symbol", "course", "speed"]: if key in self.data: res[key] = self.data[key] return res class AprsParser(object): def __init__(self, handler): self.ax25parser = Ax25Parser() self.deframer = KissDeframer() self.dial_freq = None self.band = None self.handler = handler self.metric = self.getMetric() def setDialFrequency(self, freq): self.dial_freq = freq self.band = Bandplan.getSharedInstance().findBand(freq) self.metric = self.getMetric() def getMetric(self): band = "unknown" if self.band is not None: band = self.band.getName() name = "aprs.decodes.{band}.aprs".format(band=band) metrics = Metrics.getSharedInstance() metric = metrics.getMetric(name) if metric is None: metric = CounterMetric() metrics.addMetric(name, metric) return metric def parse(self, raw): for frame in self.deframer.parse(raw): try: data = self.ax25parser.parse(frame) # TODO how can we tell if this is an APRS frame at all? aprsData = self.parseAprsData(data) logger.debug("decoded APRS data: %s", aprsData) self.updateMap(aprsData) self.metric.inc() self.handler.write_aprs_data(aprsData) except Exception: logger.exception("exception while parsing aprs data") def updateMap(self, mapData): if "type" in mapData and mapData["type"] == "thirdparty" and "data" in mapData: mapData = mapData["data"] if "lat" in mapData and "lon" in mapData: loc = AprsLocation(mapData) source = mapData["source"] if "type" in mapData: if mapData["type"] == "item": source = mapData["item"] elif mapData["type"] == "object": source = mapData["object"] Map.getSharedInstance().updateLocation(source, loc, "APRS", self.band) def hasCompressedCoordinates(self, raw): return raw[0] == "/" or raw[0] == "\\" def parseUncompressedCoordinates(self, raw): lat = int(raw[0:2]) + float(raw[2:7]) / 60 if raw[7] == "S": lat *= -1 lon = int(raw[9:12]) + float(raw[12:17]) / 60 if raw[17] == "W": lon *= -1 return {"lat": lat, "lon": lon, "symbol": getSymbolData(raw[18], raw[8])} def parseCompressedCoordinates(self, raw): return { "lat": 90 - decodeBase91(raw[1:5]) / 380926, "lon": -180 + decodeBase91(raw[5:9]) / 190463, "symbol": getSymbolData(raw[9], raw[0]), } def parseTimestamp(self, raw): now = datetime.now() if raw[6] == "h": ts = datetime.strptime(raw[0:6], "%H%M%S") ts = ts.replace(year=now.year, month=now.month, day=now.month, tzinfo=timezone.utc) else: ts = datetime.strptime(raw[0:6], "%d%H%M") ts = ts.replace(year=now.year, month=now.month) if raw[6] == "z": ts = ts.replace(tzinfo=timezone.utc) elif raw[6] == "/": ts = ts.replace(tzinfo=now.tzinfo) else: logger.warning("invalid timezone info byte: %s", raw[6]) return int(ts.timestamp() * 1000) def parseStatusUpate(self, raw): res = {"type": "status"} if raw[6] == "z": res["timestamp"] = self.parseTimestamp(raw[0:7]) res["comment"] = raw[7:] else: res["comment"] = raw return res def parseAprsData(self, data): information = data["data"] # forward some of the ax25 data aprsData = {"source": data["source"], "destination": data["destination"], "path": data["path"]} if information[0] == 0x1C or information[0] == ord("`") or information[0] == ord("'"): aprsData.update(MicEParser().parse(data)) return aprsData information = information.decode(encoding, "replace") # APRS data type identifier dti = information[0] if dti == "!" or dti == "=": # position without timestamp aprsData.update(self.parseRegularAprsData(information[1:])) elif dti == "/" or dti == "@": # position with timestamp aprsData["timestamp"] = self.parseTimestamp(information[1:8]) aprsData.update(self.parseRegularAprsData(information[8:])) elif dti == ">": # status update aprsData.update(self.parseStatusUpate(information[1:])) elif dti == "}": # third party aprsData.update(self.parseThirdpartyAprsData(information[1:])) elif dti == ":": # message aprsData.update(self.parseMessage(information[1:])) elif dti == ";": # object aprsData.update(self.parseObject(information[1:])) elif dti == ")": # item aprsData.update(self.parseItem(information[1:])) return aprsData def parseObject(self, information): result = {"type": "object"} if len(information) > 16: result["object"] = information[0:9].strip() result["live"] = information[9] == "*" result["timestamp"] = self.parseTimestamp(information[10:17]) result.update(self.parseRegularAprsData(information[17:])) # override type, losing information about compression result["type"] = "object" return result def parseItem(self, information): result = {"type": "item"} if len(information) > 3: indexes = [information[0:10].find(p) for p in ["!", "_"]] filtered = [i for i in indexes if i >= 3] filtered.sort() if len(filtered): index = filtered[0] result["item"] = information[0:index] result["live"] = information[index] == "!" result.update(self.parseRegularAprsData(information[index + 1 :])) # override type, losing information about compression result["type"] = "item" return result def parseMessage(self, information): result = {"type": "message"} if len(information) > 9 and information[9] == ":": result["adressee"] = information[0:9] message = information[10:] if len(message) > 3 and message[0:3] == "ack": result["type"] = "messageacknowledgement" result["messageid"] = int(message[3:8]) elif len(message) > 3 and message[0:3] == "rej": result["type"] = "messagerejection" result["messageid"] = int(message[3:8]) else: matches = messageIdRegex.match(message) if matches: result["messageid"] = int(matches.group(2)) message = matches.group(1) result["message"] = message return result def parseThirdpartyAprsData(self, information): matches = thirdpartyeRegex.match(information) if matches: path = matches.group(2).split(",") destination = next((c.strip("*").upper() for c in path if c.endswith("*")), None) data = self.parseAprsData( { "source": matches.group(1).upper(), "destination": destination, "path": path, "data": matches.group(6).encode(encoding), } ) return {"type": "thirdparty", "data": data} return {"type": "thirdparty"} def parseRegularAprsData(self, information): if self.hasCompressedCoordinates(information): aprsData = self.parseCompressedCoordinates(information[0:10]) aprsData["type"] = "compressed" if information[10] != " ": if information[10] == "{": # pre-calculated radio range aprsData["range"] = 2 * 1.08 ** (ord(information[11]) - 33) * milesToKilometers else: aprsData["course"] = (ord(information[10]) - 33) * 4 # speed is in knots... convert to metric (km/h) aprsData["speed"] = (1.08 ** (ord(information[11]) - 33) - 1) * knotsToKilometers # compression type t = ord(information[12]) aprsData["fix"] = (t & 0b00100000) > 0 sources = ["other", "GLL", "GGA", "RMC"] aprsData["nmeasource"] = sources[(t & 0b00011000) >> 3] origins = [ "Compressed", "TNC BText", "Software", "[tbd]", "KPC3", "Pico", "Other tracker", "Digipeater conversion", ] aprsData["compressionorigin"] = origins[t & 0b00000111] comment = information[13:] else: aprsData = self.parseUncompressedCoordinates(information[0:19]) aprsData["type"] = "regular" comment = information[19:] def decodeHeightGainDirectivity(comment): res = {"height": 2 ** int(comment[4]) * 10 * feetToMeters, "gain": int(comment[5])} directivity = int(comment[6]) if directivity == 0: res["directivity"] = "omni" elif 0 < directivity < 9: res["directivity"] = directivity * 45 return res # aprs data extensions # yes, weather stations are officially identified by their symbols. go figure... if "symbol" in aprsData and aprsData["symbol"]["index"] == 62: # weather report weather = {} if len(comment) > 6 and comment[3] == "/": try: weather["wind"] = {"direction": int(comment[0:3]), "speed": int(comment[4:7]) * milesToKilometers} except ValueError: pass comment = comment[7:] parser = WeatherParser(comment, weather) aprsData["weather"] = parser.getWeather() comment = parser.getRemainder() elif len(comment) > 6: if comment[3] == "/": # course and speed # for a weather report, this would be wind direction and speed try: aprsData["course"] = int(comment[0:3]) aprsData["speed"] = int(comment[4:7]) * knotsToKilometers except ValueError: pass comment = comment[7:] elif comment[0:3] == "PHG": # station power and effective antenna height/gain/directivity try: powerCodes = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] aprsData["power"] = powerCodes[int(comment[3])] aprsData.update(decodeHeightGainDirectivity(comment)) except ValueError: pass comment = comment[7:] elif comment[0:3] == "RNG": # pre-calculated radio range try: aprsData["range"] = int(comment[3:7]) * milesToKilometers except ValueError: pass comment = comment[7:] elif comment[0:3] == "DFS": # direction finding signal strength and antenna height/gain try: aprsData["strength"] = int(comment[3]) aprsData.update(decodeHeightGainDirectivity(comment)) except ValueError: pass comment = comment[7:] matches = altitudeRegex.match(comment) if matches: aprsData["altitude"] = int(matches.group(2)) * feetToMeters comment = matches.group(1) + matches.group(3) aprsData["comment"] = comment return aprsData class MicEParser(object): def extractNumber(self, input): n = ord(input) if n >= ord("P"): return n - ord("P") if n >= ord("A"): return n - ord("A") return n - ord("0") def listToNumber(self, input): base = self.listToNumber(input[:-1]) * 10 if len(input) > 1 else 0 return base + input[-1] def extractAltitude(self, comment): if len(comment) < 4 or comment[3] != "}": return (comment, None) return comment[4:], decodeBase91(comment[:3]) - 10000 def extractDevice(self, comment): if len(comment) > 0: if comment[0] == ">": if len(comment) > 1: if comment[-1] == "=": return comment[1:-1], {"manufacturer": "Kenwood", "device": "TH-D72"} if comment[-1] == "^": return comment[1:-1], {"manufacturer": "Kenwood", "device": "TH-D74"} return comment[1:], {"manufacturer": "Kenwood", "device": "TH-D7A"} if comment[0] == "]": if len(comment) > 1 and comment[-1] == "=": return comment[1:-1], {"manufacturer": "Kenwood", "device": "TM-D710"} return comment[1:], {"manufacturer": "Kenwood", "device": "TM-D700"} if len(comment) > 2 and (comment[0] == "`" or comment[0] == "'"): if comment[-2] == "_": devices = { "b": "VX-8", '"': "FTM-350", "#": "VX-8G", "$": "FT1D", "%": "FTM-400DR", ")": "FTM-100D", "(": "FT2D", "0": "FT3D", } return comment[1:-2], {"manufacturer": "Yaesu", "device": devices.get(comment[-1], "Unknown")} if comment[-2:] == " X": return comment[1:-2], {"manufacturer": "SainSonic", "device": "AP510"} if comment[-2] == "(": devices = {"5": "D578UV", "8": "D878UV"} return comment[1:-2], {"manufacturer": "Anytone", "device": devices.get(comment[-1], "Unknown")} if comment[-2] == "|": devices = {"3": "TinyTrack3", "4": "TinyTrack4"} return comment[1:-2], {"manufacturer": "Byonics", "device": devices.get(comment[-1], "Unknown")} if comment[-2:] == "^v": return comment[1:-2], {"manufacturer": "HinzTec", "device": "anyfrog"} if comment[-2] == ":": devices = {"4": "P4dragon DR-7400 modem", "8": "P4dragon DR-7800 modem"} return ( comment[1:-2], {"manufacturer": "SCS GmbH & Co.", "device": devices.get(comment[-1], "Unknown")}, ) if comment[-2:] == "~v": return comment[1:-2], {"manufacturer": "Other", "device": "Other"} return comment[1:-2], None return comment, None def parse(self, data): information = data["data"] destination = data["destination"] rawLatitude = [self.extractNumber(c) for c in destination[0:6]] lat = self.listToNumber(rawLatitude[0:2]) + self.listToNumber(rawLatitude[2:6]) / 6000 if ord(destination[3]) <= ord("9"): lat *= -1 lon = information[1] - 28 if ord(destination[4]) >= ord("P"): lon += 100 if 180 <= lon <= 189: lon -= 80 if 190 <= lon <= 199: lon -= 190 minutes = information[2] - 28 if minutes >= 60: minutes -= 60 lon += minutes / 60 + (information[3] - 28) / 6000 if ord(destination[5]) >= ord("P"): lon *= -1 speed = (information[4] - 28) * 10 dc28 = information[5] - 28 speed += int(dc28 / 10) course = (dc28 % 10) * 100 course += information[6] - 28 if speed >= 800: speed -= 800 if course >= 400: course -= 400 # speed is in knots... convert to metric (km/h) speed *= knotsToKilometers comment = information[9:].decode(encoding, "replace").strip() (comment, altitude) = self.extractAltitude(comment) (comment, device) = self.extractDevice(comment) # altitude might be inside the device string, so repeat and choose one (comment, insideAltitude) = self.extractAltitude(comment) altitude = next((a for a in [altitude, insideAltitude] if a is not None), None) return { "fix": information[0] == ord("`") or information[0] == 0x1C, "lat": lat, "lon": lon, "comment": comment, "altitude": altitude, "speed": speed, "course": course, "device": device, "type": "Mic-E", "symbol": getSymbolData(chr(information[7]), chr(information[8])) }