Implementiere Fahrzeugzählung mit Linienüberquerung

- Linienschnitt-Algorithmus für präzise Fahrzeugzählung
- Interaktive Linienauswahl im Browser (Canvas-basiert)
- Session-Management für benutzerdefinierte Zähllinien
- Typ-spezifische Zähler (Autos, LKW, Busse, Motorräder)
- REST-API für Linienkonfiguration und Zähler-Reset
- Gestrichelte Zähllinie als Video-Overlay
- Detailliertes Zähler-Display im Video

Features:
- Linienüberquerung-Erkennung (beide Richtungen)
- Keine Mehrfachzählung durch Track-ID-Management
- Funktioniert für Webcam und Video-Upload
- Benutzerfreundliche UI mit Echtzeit-Feedback

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
2025-12-08 14:42:46 +00:00
commit 504f8c0b69
6 changed files with 990 additions and 0 deletions

86
CLAUDE.md Normal file
View File

@@ -0,0 +1,86 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
This is a Flask-based web application for real-time object detection and tracking using YOLOv11. The application supports both webcam streaming and uploaded video file processing with object detection overlays.
## Key Dependencies
- **Flask**: Web framework for routing and serving HTML templates
- **OpenCV (cv2)**: Video processing and frame manipulation
- **Ultralytics YOLO**: YOLOv11 model for object detection and tracking
- **NumPy**: Array operations for image data
The YOLO model file (`yolo11s.pt`) must be present in the root directory.
## Running the Application
Start the Flask development server:
```bash
python3 app.py
```
The application runs on `0.0.0.0:8080` and is accessible at `http://localhost:8080`
## Application Architecture
### Single-File Structure
The entire application is contained in `app.py` with no separate modules. All routes, video processing logic, and model initialization are in this single file.
### Core Components
**YOLO Model (lines 10-11)**
- Model loaded once at application startup: `model = YOLO("yolo11s.pt")`
- Class names extracted from model for labeling: `names = model.model.names`
**Video Processing Pattern**
Both webcam and uploaded video processing share identical detection logic:
1. Frame skipping: Only processes every 2nd frame (`count % 2 != 0`) for performance
2. Frame resizing: All frames resized to (1020, 600) for consistent output
3. YOLO tracking: Uses `model.track(frame, persist=True)` to maintain object IDs across frames
4. Annotation: Draws bounding boxes and labels with format `{track_id} - {class_name}`
5. Streaming: Yields JPEG frames as multipart HTTP response
**Duplicate Code**
The functions `detect_objects_from_webcam()` (lines 21-52) and `detect_objects_from_video()` (lines 86-118) contain nearly identical logic - only the video source differs (webcam vs. file path).
### Routes and Flow
**Main Routes:**
- `/` - Landing page (index.html) with video upload form and webcam button
- `/start_webcam` - Webcam detection page (webcam.html)
- `/upload` [POST] - Handles video file uploads, saves to `uploads/` directory
- `/uploads/<filename>` - Video playback page (play_video.html)
**Streaming Routes:**
- `/webcam_feed` - Streams processed webcam frames with detections
- `/video_feed/<filename>` - Streams processed video file frames with detections
- `/video/<filename>` - Serves raw video files from uploads directory
### Templates
All templates follow the same pattern:
- Centered layout with flex containers
- Fixed dimensions (1020x600) for video display
- "Back to Home" link for navigation
## Important Notes
**File Uploads**
- Uploaded videos are saved to `uploads/` directory (created automatically if missing)
- No file size limits or validation beyond checking file existence
- No cleanup mechanism for uploaded files
**Performance Optimization**
- Frame skipping (every 2nd frame) reduces CPU load but may miss fast-moving objects
- Frame resizing to 1020x600 is hardcoded throughout
**Object Tracking**
- Uses persistent tracking (`persist=True`) to maintain object IDs across frames
- Track IDs are displayed alongside class names in the format: `{track_id} - {class_name}`
- Tracking state persists within a single video stream session
**Webcam Access**
- Uses `cv2.VideoCapture(0)` for default webcam
- No error handling if webcam is unavailable or already in use

116
README.md Normal file
View File

@@ -0,0 +1,116 @@
# Fahrzeug- und Objekt-Erkennungssystem
Eine webbasierte Anwendung zur Echtzeit-Objekterkennung und -Verfolgung mittels YOLOv11. Die Anwendung unterstützt sowohl Live-Webcam-Streams als auch die Verarbeitung hochgeladener Videodateien.
## Funktionen
- **Webcam-Erkennung**: Echtzeit-Objekterkennung über die Webcam
- **Video-Upload**: Hochladen und Verarbeiten von Videodateien mit Objekterkennung
- **Objekt-Tracking**: Persistente Verfolgung von Objekten mit eindeutigen IDs über Frames hinweg
- **Visuelle Markierungen**: Bounding Boxes und Labels für erkannte Objekte
- **Browser-basiert**: Einfacher Zugriff über den Webbrowser
## Voraussetzungen
- Python 3.12 oder höher
- Webcam (für Live-Erkennung)
- YOLO-Modell (`yolo11s.pt`) im Hauptverzeichnis
## Installation
1. Repository klonen oder herunterladen
2. Erforderliche Python-Pakete installieren:
```bash
pip3 install flask opencv-python numpy ultralytics
```
3. Sicherstellen, dass die Modelldatei `yolo11s.pt` im Hauptverzeichnis vorhanden ist
## Verwendung
### Anwendung starten
```bash
python3 app.py
```
Die Anwendung ist dann unter `http://localhost:8080` erreichbar.
### Webcam-Erkennung
1. Öffnen Sie `http://localhost:8080` im Browser
2. Klicken Sie auf "Start Webcam Detection"
3. Die Webcam wird aktiviert und Objekte werden in Echtzeit erkannt und markiert
4. Jedes Objekt erhält eine Track-ID und Klassenbeschriftung
### Video-Upload
1. Öffnen Sie `http://localhost:8080` im Browser
2. Wählen Sie eine Videodatei über das Upload-Formular aus
3. Klicken Sie auf "Upload Video"
4. Das Video wird verarbeitet und mit Objekterkennungen angezeigt
## Projektstruktur
```
.
├── app.py # Haupt-Flask-Anwendung
├── yolo11s.pt # YOLOv11-Modell (erforderlich)
├── templates/ # HTML-Templates
│ ├── index.html # Startseite
│ ├── webcam.html # Webcam-Anzeige
│ └── play_video.html # Video-Wiedergabe
├── uploads/ # Hochgeladene Videos (automatisch erstellt)
└── highway1.mp4 # Beispielvideo
```
## Technische Details
### Verwendete Technologien
- **Flask**: Web-Framework für Routing und Template-Rendering
- **OpenCV**: Videobearbeitung und Frame-Manipulation
- **Ultralytics YOLO**: YOLOv11-Modell für Objekterkennung und Tracking
- **NumPy**: Array-Operationen für Bilddaten
### Verarbeitungs-Pipeline
1. **Frame-Erfassung**: Webcam oder Videodatei als Quelle
2. **Frame-Skipping**: Verarbeitung jedes 2. Frames zur Leistungsoptimierung
3. **Größenanpassung**: Alle Frames werden auf 1020x600 Pixel skaliert
4. **YOLO-Tracking**: Objekterkennung mit persistenten Track-IDs
5. **Annotation**: Zeichnen von Bounding Boxes und Labels
6. **Streaming**: Übertragung als MJPEG-Stream an den Browser
### Objekterkennung
- Erkennt verschiedene Objektklassen (abhängig vom YOLO-Modell)
- Vergibt eindeutige Track-IDs für jedes Objekt
- Beschriftung im Format: `{Track-ID} - {Klassenname}`
- Grüne Bounding Boxes um erkannte Objekte
- Magenta-farbene Textbeschriftungen
## Leistungsoptimierung
- **Frame-Skipping**: Nur jeder 2. Frame wird verarbeitet, um CPU-Last zu reduzieren
- **Feste Auflösung**: Einheitliche Größe von 1020x600 Pixel für alle Frames
- **Effizientes Streaming**: JPEG-Kompression für Frame-Übertragung
## Einschränkungen
- Keine Validierung der Upload-Dateigröße
- Keine automatische Bereinigung hochgeladener Dateien
- Feste Frame-Dimensionen (1020x600)
- Keine Fehlerbehandlung bei Webcam-Zugriffsproblemen
## Hinweise
- Bei der ersten Verwendung kann das Laden des YOLO-Modells einige Sekunden dauern
- Die Erkennungsgenauigkeit hängt vom verwendeten YOLO-Modell ab
- Frame-Skipping kann bei sehr schnell bewegten Objekten zu Erkennungslücken führen
- Hochgeladene Videos werden im Ordner `uploads/` gespeichert und müssen manuell gelöscht werden
## Lizenz
Projekt basiert auf Ressourcen von [Pyresearch](https://pyresearch.org/)

304
app.py Normal file
View File

@@ -0,0 +1,304 @@
import os
import cv2
import numpy as np
from flask import Flask, render_template, Response, request, redirect, url_for, send_from_directory, session, jsonify
from ultralytics import YOLO
app = Flask(__name__)
app.secret_key = 'vehicle_counting_secret_key_2024' # Required for session management
# Load the YOLOv8 model
model = YOLO("yolo11s.pt")
names = model.model.names
# Vehicle classes to count
VEHICLE_CLASSES = {'car', 'truck', 'bus', 'motorcycle'}
# Helper function to check if two line segments intersect
def line_intersect(p1, p2, p3, p4):
"""
Check if line segment p1-p2 intersects with line segment p3-p4
Returns True if they intersect, False otherwise
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
denom = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
if abs(denom) < 1e-10:
return False
t = ((x1 - x3) * (y3 - y4) - (y1 - y3) * (x3 - x4)) / denom
u = -((x1 - x2) * (y1 - y3) - (y1 - y2) * (x1 - x3)) / denom
return 0 <= t <= 1 and 0 <= u <= 1
@app.route('/')
def index():
return render_template('index.html')
@app.route('/start_webcam')
def start_webcam():
# Initialize default counting line in session if not set
if 'counting_line' not in session:
session['counting_line'] = {'x1': 0, 'y1': 300, 'x2': 1020, 'y2': 300}
return render_template('webcam.html')
@app.route('/api/set_line', methods=['POST'])
def set_counting_line():
"""API endpoint to set the counting line coordinates"""
data = request.json
session['counting_line'] = {
'x1': int(data['x1']),
'y1': int(data['y1']),
'x2': int(data['x2']),
'y2': int(data['y2'])
}
return jsonify({'status': 'success', 'line': session['counting_line']})
@app.route('/api/get_line', methods=['GET'])
def get_counting_line():
"""API endpoint to get the current counting line coordinates"""
if 'counting_line' not in session:
session['counting_line'] = {'x1': 0, 'y1': 300, 'x2': 1020, 'y2': 300}
return jsonify(session['counting_line'])
@app.route('/api/reset_count', methods=['POST'])
def reset_count():
"""API endpoint to reset the vehicle count"""
session['reset_count'] = True
return jsonify({'status': 'success'})
def detect_objects_from_webcam():
count = 0
cap = cv2.VideoCapture(0) # 0 for the default webcam
# Track vehicle positions and counted IDs
track_positions = {} # {track_id: (center_x, center_y)}
counted_ids = set()
vehicle_count = 0
vehicle_type_counts = {'car': 0, 'truck': 0, 'bus': 0, 'motorcycle': 0}
while True:
ret, frame = cap.read()
if not ret:
break
count += 1
if count % 2 != 0:
continue
# Resize the frame to (1020, 600)
frame = cv2.resize(frame, (1020, 600))
# Get counting line from session (default to horizontal middle line)
line_data = session.get('counting_line', {'x1': 0, 'y1': 300, 'x2': 1020, 'y2': 300})
line_start = (line_data['x1'], line_data['y1'])
line_end = (line_data['x2'], line_data['y2'])
# Check if count should be reset
if session.get('reset_count', False):
counted_ids.clear()
vehicle_count = 0
vehicle_type_counts = {'car': 0, 'truck': 0, 'bus': 0, 'motorcycle': 0}
session['reset_count'] = False
# Draw counting line (dashed yellow line with black gaps)
cv2.line(frame, line_start, line_end, (0, 255, 255), 2, cv2.LINE_AA)
# Draw dashed effect
line_length = int(np.sqrt((line_end[0] - line_start[0])**2 + (line_end[1] - line_start[1])**2))
dash_length = 20
for i in range(0, line_length, dash_length * 2):
t1 = i / line_length
t2 = min((i + dash_length) / line_length, 1.0)
x1 = int(line_start[0] + t1 * (line_end[0] - line_start[0]))
y1 = int(line_start[1] + t1 * (line_end[1] - line_start[1]))
x2 = int(line_start[0] + t2 * (line_end[0] - line_start[0]))
y2 = int(line_start[1] + t2 * (line_end[1] - line_start[1]))
cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 0), 2)
# Run YOLOv8 tracking on the frame
results = model.track(frame, persist=True)
if results[0].boxes is not None and results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.int().cpu().tolist()
class_ids = results[0].boxes.cls.int().cpu().tolist()
track_ids = results[0].boxes.id.int().cpu().tolist()
for box, class_id, track_id in zip(boxes, class_ids, track_ids):
c = names[class_id]
x1, y1, x2, y2 = box
# Calculate center point of bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Check if this is a vehicle we want to count
if c in VEHICLE_CLASSES:
# If we have a previous position for this track
if track_id in track_positions and track_id not in counted_ids:
prev_x, prev_y = track_positions[track_id]
# Check if the vehicle crossed the counting line
if line_intersect((prev_x, prev_y), (center_x, center_y), line_start, line_end):
counted_ids.add(track_id)
vehicle_count += 1
vehicle_type_counts[c] += 1
# Update position
track_positions[track_id] = (center_x, center_y)
# Draw bounding box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f'{track_id} - {c}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 1)
# Display vehicle count with type breakdown
cv2.rectangle(frame, (10, 10), (350, 140), (0, 0, 0), -1)
cv2.putText(frame, f'Gesamt: {vehicle_count}', (20, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
cv2.putText(frame, f'Autos: {vehicle_type_counts["car"]}', (20, 65), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'LKW: {vehicle_type_counts["truck"]}', (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'Busse: {vehicle_type_counts["bus"]}', (20, 115), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'Motorraeder: {vehicle_type_counts["motorcycle"]}', (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), 1)
_, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/webcam_feed')
def webcam_feed():
return Response(detect_objects_from_webcam(),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/upload', methods=['POST'])
def upload_video():
if 'file' not in request.files:
return redirect(request.url)
file = request.files['file']
if file.filename == '':
return redirect(request.url)
# Save the uploaded file to the uploads folder
if not os.path.exists('uploads'):
os.makedirs('uploads')
file_path = os.path.join('uploads', file.filename)
file.save(file_path)
# Redirect to the video playback page after upload
return redirect(url_for('play_video', filename=file.filename))
@app.route('/uploads/<filename>')
def play_video(filename):
# Initialize default counting line in session if not set
if 'counting_line' not in session:
session['counting_line'] = {'x1': 0, 'y1': 300, 'x2': 1020, 'y2': 300}
return render_template('play_video.html', filename=filename)
@app.route('/video/<path:filename>')
def send_video(filename):
return send_from_directory('uploads', filename)
def detect_objects_from_video(video_path):
cap = cv2.VideoCapture(video_path)
count = 0
# Track vehicle positions and counted IDs
track_positions = {} # {track_id: (center_x, center_y)}
counted_ids = set()
vehicle_count = 0
vehicle_type_counts = {'car': 0, 'truck': 0, 'bus': 0, 'motorcycle': 0}
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
count += 1
if count % 2 != 0:
continue
# Resize the frame to (1020, 600)
frame = cv2.resize(frame, (1020, 600))
# Get counting line from session (default to horizontal middle line)
line_data = session.get('counting_line', {'x1': 0, 'y1': 300, 'x2': 1020, 'y2': 300})
line_start = (line_data['x1'], line_data['y1'])
line_end = (line_data['x2'], line_data['y2'])
# Check if count should be reset
if session.get('reset_count', False):
counted_ids.clear()
vehicle_count = 0
vehicle_type_counts = {'car': 0, 'truck': 0, 'bus': 0, 'motorcycle': 0}
session['reset_count'] = False
# Draw counting line (dashed yellow line with black gaps)
cv2.line(frame, line_start, line_end, (0, 255, 255), 2, cv2.LINE_AA)
# Draw dashed effect
line_length = int(np.sqrt((line_end[0] - line_start[0])**2 + (line_end[1] - line_start[1])**2))
dash_length = 20
for i in range(0, line_length, dash_length * 2):
t1 = i / line_length
t2 = min((i + dash_length) / line_length, 1.0)
x1 = int(line_start[0] + t1 * (line_end[0] - line_start[0]))
y1 = int(line_start[1] + t1 * (line_end[1] - line_start[1]))
x2 = int(line_start[0] + t2 * (line_end[0] - line_start[0]))
y2 = int(line_start[1] + t2 * (line_end[1] - line_start[1]))
cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 0), 2)
# Run YOLOv8 tracking on the frame
results = model.track(frame, persist=True)
if results[0].boxes is not None and results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.int().cpu().tolist()
class_ids = results[0].boxes.cls.int().cpu().tolist()
track_ids = results[0].boxes.id.int().cpu().tolist()
for box, class_id, track_id in zip(boxes, class_ids, track_ids):
c = names[class_id]
x1, y1, x2, y2 = box
# Calculate center point of bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2
# Check if this is a vehicle we want to count
if c in VEHICLE_CLASSES:
# If we have a previous position for this track
if track_id in track_positions and track_id not in counted_ids:
prev_x, prev_y = track_positions[track_id]
# Check if the vehicle crossed the counting line
if line_intersect((prev_x, prev_y), (center_x, center_y), line_start, line_end):
counted_ids.add(track_id)
vehicle_count += 1
vehicle_type_counts[c] += 1
# Update position
track_positions[track_id] = (center_x, center_y)
# Draw bounding box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f'{track_id} - {c}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 1)
# Display vehicle count with type breakdown
cv2.rectangle(frame, (10, 10), (350, 140), (0, 0, 0), -1)
cv2.putText(frame, f'Gesamt: {vehicle_count}', (20, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
cv2.putText(frame, f'Autos: {vehicle_type_counts["car"]}', (20, 65), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'LKW: {vehicle_type_counts["truck"]}', (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'Busse: {vehicle_type_counts["bus"]}', (20, 115), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (200, 200, 200), 1)
cv2.putText(frame, f'Motorraeder: {vehicle_type_counts["motorcycle"]}', (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), 1)
_, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/video_feed/<filename>')
def video_feed(filename):
video_path = os.path.join('uploads', filename)
return Response(detect_objects_from_video(video_path),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run('0.0.0.0',debug=False, port=8080)

40
templates/index.html Normal file
View File

@@ -0,0 +1,40 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Object Detection</title>
<style>
body {
display: flex;
flex-direction: column;
align-items: center;
margin-top: 50px;
}
#uploadForm {
margin-bottom: 20px;
}
input[type="file"] {
margin-right: 10px;
}
#startWebcam {
padding: 10px 20px;
cursor: pointer;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 5px;
}
</style>
</head>
<body>
<h1>Object Detection</h1>
<form id="uploadForm" action="/upload" method="post" enctype="multipart/form-data">
<input type="file" name="file" accept="video/*" required>
<input type="submit" value="Upload Video">
</form>
<a id="startWebcam" href="/start_webcam">Start Webcam Detection</a>
</body>
</html>

222
templates/play_video.html Normal file
View File

@@ -0,0 +1,222 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Video Playback</title>
<style>
body {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
background-color: #f0f0f0;
padding: 20px;
}
.video-container {
position: relative;
width: 1020px;
height: 600px;
}
#videoFeed {
width: 1020px;
height: 600px;
border: 2px solid #ccc;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
display: block;
}
#lineCanvas {
position: absolute;
top: 0;
left: 0;
width: 1020px;
height: 600px;
cursor: crosshair;
pointer-events: none;
}
#lineCanvas.active {
pointer-events: auto;
}
.controls {
margin-top: 20px;
display: flex;
gap: 10px;
flex-wrap: wrap;
justify-content: center;
}
button {
padding: 10px 20px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
background-color: #007bff;
color: white;
transition: background-color 0.3s;
}
button:hover {
background-color: #0056b3;
}
button.active {
background-color: #28a745;
}
button.danger {
background-color: #dc3545;
}
button.danger:hover {
background-color: #c82333;
}
a {
margin-top: 20px;
text-decoration: none;
color: #007bff;
font-size: 18px;
}
a:hover {
text-decoration: underline;
}
.info {
margin-top: 10px;
color: #555;
font-size: 14px;
}
</style>
</head>
<body>
<h1>Video Playback with Object Detection</h1>
<div class="video-container">
<img id="videoFeed" src="{{ url_for('video_feed', filename=filename) }}" />
<canvas id="lineCanvas"></canvas>
</div>
<div class="controls">
<button id="setLineBtn">Zähllinie setzen</button>
<button id="resetCountBtn" class="danger">Zähler zurücksetzen</button>
</div>
<div class="info" id="infoText">Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.</div>
<a href="/">Back to Home</a>
<script>
const canvas = document.getElementById('lineCanvas');
const ctx = canvas.getContext('2d');
const setLineBtn = document.getElementById('setLineBtn');
const resetCountBtn = document.getElementById('resetCountBtn');
const infoText = document.getElementById('infoText');
let isSettingLine = false;
let firstPoint = null;
let currentLine = null;
// Load existing line from server
fetch('/api/get_line')
.then(res => res.json())
.then(data => {
currentLine = data;
drawLine();
});
setLineBtn.addEventListener('click', () => {
isSettingLine = !isSettingLine;
if (isSettingLine) {
setLineBtn.textContent = 'Abbrechen';
setLineBtn.classList.add('active');
canvas.classList.add('active');
firstPoint = null;
infoText.textContent = 'Klicke auf den Startpunkt der Zähllinie...';
} else {
setLineBtn.textContent = 'Zähllinie setzen';
setLineBtn.classList.remove('active');
canvas.classList.remove('active');
firstPoint = null;
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
drawLine();
}
});
canvas.addEventListener('click', (e) => {
if (!isSettingLine) return;
const rect = canvas.getBoundingClientRect();
const x = Math.round(e.clientX - rect.left);
const y = Math.round(e.clientY - rect.top);
if (!firstPoint) {
firstPoint = { x, y };
infoText.textContent = 'Klicke auf den Endpunkt der Zähllinie...';
drawTemporaryPoint(x, y);
} else {
currentLine = { x1: firstPoint.x, y1: firstPoint.y, x2: x, y2: y };
// Send line to server
fetch('/api/set_line', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(currentLine)
})
.then(res => res.json())
.then(data => {
console.log('Line set:', data);
infoText.textContent = 'Zähllinie erfolgreich gesetzt!';
setTimeout(() => {
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
}, 2000);
});
isSettingLine = false;
setLineBtn.textContent = 'Zähllinie setzen';
setLineBtn.classList.remove('active');
canvas.classList.remove('active');
firstPoint = null;
drawLine();
}
});
resetCountBtn.addEventListener('click', () => {
fetch('/api/reset_count', {
method: 'POST',
headers: { 'Content-Type': 'application/json' }
})
.then(res => res.json())
.then(data => {
console.log('Count reset:', data);
infoText.textContent = 'Zähler wurde zurückgesetzt!';
setTimeout(() => {
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
}, 2000);
});
});
function drawLine() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
if (currentLine) {
ctx.strokeStyle = 'rgba(255, 255, 0, 0.8)';
ctx.lineWidth = 3;
ctx.setLineDash([10, 10]);
ctx.beginPath();
ctx.moveTo(currentLine.x1, currentLine.y1);
ctx.lineTo(currentLine.x2, currentLine.y2);
ctx.stroke();
ctx.setLineDash([]);
}
}
function drawTemporaryPoint(x, y) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawLine();
ctx.fillStyle = 'rgba(255, 255, 0, 0.8)';
ctx.beginPath();
ctx.arc(x, y, 5, 0, 2 * Math.PI);
ctx.fill();
}
// Redraw line periodically in case it gets cleared
setInterval(() => {
if (!isSettingLine && currentLine) {
drawLine();
}
}, 100);
</script>
</body>
</html>

222
templates/webcam.html Normal file
View File

@@ -0,0 +1,222 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Webcam Feed</title>
<style>
body {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
background-color: #f0f0f0;
padding: 20px;
}
.video-container {
position: relative;
width: 1020px;
height: 600px;
}
#videoFeed {
width: 1020px;
height: 600px;
border: 2px solid #ccc;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
display: block;
}
#lineCanvas {
position: absolute;
top: 0;
left: 0;
width: 1020px;
height: 600px;
cursor: crosshair;
pointer-events: none;
}
#lineCanvas.active {
pointer-events: auto;
}
.controls {
margin-top: 20px;
display: flex;
gap: 10px;
flex-wrap: wrap;
justify-content: center;
}
button {
padding: 10px 20px;
font-size: 16px;
border: none;
border-radius: 5px;
cursor: pointer;
background-color: #007bff;
color: white;
transition: background-color 0.3s;
}
button:hover {
background-color: #0056b3;
}
button.active {
background-color: #28a745;
}
button.danger {
background-color: #dc3545;
}
button.danger:hover {
background-color: #c82333;
}
a {
margin-top: 20px;
text-decoration: none;
color: #007bff;
font-size: 18px;
}
a:hover {
text-decoration: underline;
}
.info {
margin-top: 10px;
color: #555;
font-size: 14px;
}
</style>
</head>
<body>
<h1>Webcam Object Detection</h1>
<div class="video-container">
<img id="videoFeed" src="{{ url_for('webcam_feed') }}" />
<canvas id="lineCanvas"></canvas>
</div>
<div class="controls">
<button id="setLineBtn">Zähllinie setzen</button>
<button id="resetCountBtn" class="danger">Zähler zurücksetzen</button>
</div>
<div class="info" id="infoText">Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.</div>
<a href="/">Back to Home</a>
<script>
const canvas = document.getElementById('lineCanvas');
const ctx = canvas.getContext('2d');
const setLineBtn = document.getElementById('setLineBtn');
const resetCountBtn = document.getElementById('resetCountBtn');
const infoText = document.getElementById('infoText');
let isSettingLine = false;
let firstPoint = null;
let currentLine = null;
// Load existing line from server
fetch('/api/get_line')
.then(res => res.json())
.then(data => {
currentLine = data;
drawLine();
});
setLineBtn.addEventListener('click', () => {
isSettingLine = !isSettingLine;
if (isSettingLine) {
setLineBtn.textContent = 'Abbrechen';
setLineBtn.classList.add('active');
canvas.classList.add('active');
firstPoint = null;
infoText.textContent = 'Klicke auf den Startpunkt der Zähllinie...';
} else {
setLineBtn.textContent = 'Zähllinie setzen';
setLineBtn.classList.remove('active');
canvas.classList.remove('active');
firstPoint = null;
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
drawLine();
}
});
canvas.addEventListener('click', (e) => {
if (!isSettingLine) return;
const rect = canvas.getBoundingClientRect();
const x = Math.round(e.clientX - rect.left);
const y = Math.round(e.clientY - rect.top);
if (!firstPoint) {
firstPoint = { x, y };
infoText.textContent = 'Klicke auf den Endpunkt der Zähllinie...';
drawTemporaryPoint(x, y);
} else {
currentLine = { x1: firstPoint.x, y1: firstPoint.y, x2: x, y2: y };
// Send line to server
fetch('/api/set_line', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(currentLine)
})
.then(res => res.json())
.then(data => {
console.log('Line set:', data);
infoText.textContent = 'Zähllinie erfolgreich gesetzt!';
setTimeout(() => {
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
}, 2000);
});
isSettingLine = false;
setLineBtn.textContent = 'Zähllinie setzen';
setLineBtn.classList.remove('active');
canvas.classList.remove('active');
firstPoint = null;
drawLine();
}
});
resetCountBtn.addEventListener('click', () => {
fetch('/api/reset_count', {
method: 'POST',
headers: { 'Content-Type': 'application/json' }
})
.then(res => res.json())
.then(data => {
console.log('Count reset:', data);
infoText.textContent = 'Zähler wurde zurückgesetzt!';
setTimeout(() => {
infoText.textContent = 'Klicke auf "Zähllinie setzen" und dann zweimal auf das Video, um die Zähllinie zu definieren.';
}, 2000);
});
});
function drawLine() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
if (currentLine) {
ctx.strokeStyle = 'rgba(255, 255, 0, 0.8)';
ctx.lineWidth = 3;
ctx.setLineDash([10, 10]);
ctx.beginPath();
ctx.moveTo(currentLine.x1, currentLine.y1);
ctx.lineTo(currentLine.x2, currentLine.y2);
ctx.stroke();
ctx.setLineDash([]);
}
}
function drawTemporaryPoint(x, y) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawLine();
ctx.fillStyle = 'rgba(255, 255, 0, 0.8)';
ctx.beginPath();
ctx.arc(x, y, 5, 0, 2 * Math.PI);
ctx.fill();
}
// Redraw line periodically in case it gets cleared
setInterval(() => {
if (!isSettingLine && currentLine) {
drawLine();
}
}, 100);
</script>
</body>
</html>