Radio-Lora-Node-Atmega328/sensor-abp-ttn.ino

497 lines
16 KiB
Arduino
Raw Normal View History

2020-05-17 10:32:37 +00:00
/* This file has been prepared for Doxygen **************************/
/*! \file LoRa_Radio_Module_abp_s_BME280.ino **************************
*
* \brief Device ID 5935br27node004
*
* The payload for all environment nodes are standardized by:
* 1. node (node identification, 0..255)
* 2. battery (battery voltage [V])
* 3. vcc (system power supply [V])
* 4. temperature (environment air temperature [C])
* 5. pressure (environment air pressure [Pa])
* 6. humidity (environment air humidity [%])
*
* Copyright (C) 2019 W.Nijs (ALF4all)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* \author W.Nijs.
* \date 25/10/2019
* \version 1.0 25/10/2019, initial revision, W.Nijs
*
*********************************************************************/
/*********************************************************************
* The TTN Payload function equal for all environment applications
**********************************************************************
function Decoder(bytes, port) {
var retValue = {
bytes: bytes
};
retValue.node = bytes[0];
retValue.battery = bytes[1] / 10.0;
retValue.vcc = bytes[2] / 10.0;
retValue.temperature = (((bytes[3] << 8) | bytes[4]) / 10.0) - 40.0;
retValue.pressure = ((bytes[5] << 16) | (bytes[6] << 8) | bytes[7]);
retValue.humidity = ((bytes[8] << 8) | bytes[9]) / 10.0;
return retValue;
}
*********************************************************************/
/*****************************************************************//**
* Include section
*********************************************************************/
#include <lmic.h>
#include <hal/hal.h>
#include <Wire.h>
#include <SparkFunBME280.h>
#include <LowPower.h>
/*****************************************************************//**
* Define section
*********************************************************************/
#define LED 13 // on board LED
#define BATTERY A0
#define NODE_ID 1
#define PAYLOAD_LENGHT 10
#define SEA_LEVEL 101900 // [Pa]
/*****************************************************************//**
* Payload vars and objects for node, battery and the BME/P-280
*********************************************************************/
float node = 0;
float battery = 0;
float vcc = 0;
BME280 bme280; // BME280 object
float temperature = 0;
float pressure = 0;
float humidity = 0;
float altitude = 0; // not used in the payload
unsigned char payload[PAYLOAD_LENGHT]; // Payload
/*****************************************************************//**
* TTN keys and addresses for device ID 5935br27node000
*********************************************************************/
// LoRaWAN NwkSKey, network session key
// Copy from TTN Console MSB first!
2020-05-17 13:41:28 +00:00
static const PROGMEM u1_t NWKSKEY[16] = { ERSETZEN };
2020-05-17 10:32:37 +00:00
// LoRaWAN AppSKey, application session key
// Copy from TTN Console MSB first!
2020-05-17 13:41:28 +00:00
static const u1_t PROGMEM APPSKEY[16] = { ERSETZEN };
2020-05-17 10:32:37 +00:00
// LoRaWAN end-device address (DevAddr)
2020-05-17 13:41:28 +00:00
static const u4_t DEVADDR = { 0x2601XXXX }; // <-- Change this address for every node!
2020-05-17 10:32:37 +00:00
// These callbacks are only used in over-the-air activation, so they are
// left empty here (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
/*****************************************************************//**
* LoRa vars
*********************************************************************/
//int sleepcycles = 75; // every sleep cycle takes 8 secs -> 10 min
int sleepcycles = 8; // every sleep cycle takes 8 secs -> 1 min
bool joined = false;
bool sleeping = false;
static osjob_t sendjob;
/*****************************************************************//**
* RFM95 pin mapping section
* Mapping for the LoRa Radio Node
*********************************************************************/
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 9,
.dio = {/*dio0*/ 2, /*dio1*/ 5, /*dio2*/ 6},
};
/*****************************************************************//**
* readBattery()
*********************************************************************/
float readBattery(void) {
float sensor = 0;
float result = 0;
sensor = analogRead(BATTERY);
// 2M, 470K divider across battery and using the internal ADC ref
// of 1.1V.
// The sense point is bypassed with 100 nF to reduce noise at that
// point.
// Vmax = ((2e6+470e3)/470e3)*1.1V = 5,78V
// Resolution = 5,78/1023 = 5.65mV/bit
// Voltage divider current = 3V/2.47M = 1.22uA
result = sensor * 0.00565;
return result; // Return battery voltage in V
};
/*****************************************************************//**
* readVcc()
*********************************************************************/
float readVcc(void) {
float result = 0;
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Start conversion
while (bit_is_set(ADCSRA,ADSC)); // Wait conversion is ready
uint8_t low = ADCL; // Read ADCL first - it then locks ADCH
uint8_t high = ADCH; // unlocks both
result = (float)((high<<8) | low);
result = 1125300L/result; // Calculate battery voltage in mV
return (result/1000); // Return battery voltage in V
};
/*****************************************************************//**
* getParameters()
*********************************************************************/
void getParameters(void) {
node = NODE_ID;
battery = readBattery(); // [V 0.1]
vcc = readVcc(); // [V 0.1]
temperature = bme280.readTempC(); // [C 0.1]
pressure = bme280.readFloatPressure(); // [Pa 1]
humidity = bme280.readFloatHumidity(); // [% 0.1]
// not a part of the payload:
altitude = bme280.readFloatAltitudeMeters(); // [m 0.01]
};
/*****************************************************************//**
* payloadEncode()
*********************************************************************/
void payloadEncode(void) {
int i = 0;
// Payload encode algorithm
// nod [0..255]
// bat [0.0..5.5V] => bat = bat * 10; => [0..55]
// vcc [0.0..5.5V] => vcc = vcc * 10; => [0..55]
// tmp [-40..85C] => tmp = tmp + 40; => [0..125] => tmp = tmp * 10; => [0..1250]
// prs [30000..110000Pa]
// hum [0.0..100.0% RH] => hum = hum * 10 => [0..1000]
unsigned int nod = (unsigned char)(node);
unsigned char bat = (unsigned char)(battery * 10);
unsigned char mcu = (unsigned char)(vcc * 10);
unsigned int tmp = (unsigned int)((temperature + 40.0) * 10.0);
unsigned long prs = (unsigned long)(pressure);
unsigned int hum = (unsigned int)(humidity * 10);
payload[i++] = nod; // nod => 1 byte
payload[i++] = bat; // bat => 1 byte
payload[i++] = mcu; // vcc => 1 byte
payload[i++] = tmp >> 8; // tmp => 2 bytes
payload[i++] = tmp;
payload[i++] = prs >> 16; // prs => 3 bytes
payload[i++] = prs >> 8;
payload[i++] = prs;
payload[i++] = hum >> 8; // hum => 2 bytes
payload[i++] = hum;
};
/*****************************************************************//**
* parameter_print()
* Only for debugging
*********************************************************************/
void parameterPrint(void) {
/* Serial.print("Node id = ");
Serial.println(node, 0);
Serial.print("Battery = ");
Serial.print(battery, 1);
Serial.println(" V");
Serial.print("Vcc = ");
Serial.print(vcc, 1);
Serial.println(" V");
Serial.print("Temperature = ");
Serial.print(temperature, 1);
Serial.println(" *C");
Serial.print("Pressure = ");
Serial.print((pressure), 0);
Serial.println(" Pa");
Serial.print("Humidity = ");
Serial.print(humidity, 1);
Serial.println(" %");
Serial.print("Altitude = ");
Serial.print(altitude, 2);
Serial.println(" m");
*/
};
/*****************************************************************//**
* payload_print()
* Only for debugging
*********************************************************************/
void payloadPrint(void) {
int i = 0;
Serial.print("Payload = ");
for (i = 0; i < PAYLOAD_LENGHT; i++ ) {
if (payload[i] < 16)
Serial.print("0");
Serial.print(payload[i], HEX);
Serial.print(" ");
};
Serial.println("");
};
/*****************************************************************//**
* onEvent()
* Event handler
*********************************************************************/
void onEvent (ev_t ev) {
Serial.print(os_getTime());
Serial.print(": ");
switch(ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
sleeping = true;
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.txrxFlags & TXRX_ACK)
Serial.println(F("Received ack"));
if (LMIC.dataLen) {
Serial.println(F("Received "));
Serial.println(LMIC.dataLen);
Serial.println(F(" bytes of payload"));
}
delay(50); // delay to complete Serial Output before Sleeping
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
};
};
/*****************************************************************//**
* sendMessage()
*
*********************************************************************/
void sendMessage(osjob_t* j) {
getParameters();
parameterPrint(); // Optional, only for debugging
payloadEncode();
payloadPrint(); // Optional, only for debugging
// First check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, (uint8_t*)payload, PAYLOAD_LENGHT, 0);
Serial.println(F("Sending: "));
};
};
/*****************************************************************//**
* Setup function
*********************************************************************/
void setup() {
Serial.begin(115200);
Serial.println(F("=================="));
Serial.println(F("- TTN BME280 ABP -"));
Serial.println(F("- ALF4all -"));
Serial.println(F("=================="));
digitalWrite(LED, LOW); // init LED_BUILTIN as LOW
pinMode(LED, OUTPUT); // init LED_BUILTIN as an output
analogReference(INTERNAL); // 1.1V ref for readBattery(void)
bme280.setI2CAddress(0x76); // Attention:
// Aliexpress is 0x76
// Sparkfun and Adafruit is 0x77
bme280.reset();
bme280.begin();
bool status;
if (bme280.beginI2C() == false) {
Serial.println(F("Sensor did not respond, check wiring."));
// while(1); // Freeze... with no action???
};
bme280.setReferencePressure(SEA_LEVEL);
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
// Start job
sendMessage(&sendjob);
};
/*****************************************************************//**
* Loop function
*********************************************************************/
void loop() {
sendMessage(&sendjob); // Transmit sensor values
// go sleeping
while(sleeping == false) {
os_runloop_once();
};
sleeping = false;
for (int i=0;i<sleepcycles;i++) {
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);
};
};