Added new Sketch
This commit is contained in:
parent
cedc869411
commit
c591066f96
Binary file not shown.
Before Width: | Height: | Size: 64 KiB |
235
bme280-lorawan-sensor.ino
Normal file
235
bme280-lorawan-sensor.ino
Normal file
@ -0,0 +1,235 @@
|
||||
/*******************************************************************************
|
||||
Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
|
||||
Copyright (c) 2019 Severin Schols
|
||||
|
||||
Permission is hereby granted, free of charge, to anyone
|
||||
obtaining a copy of this document and accompanying files,
|
||||
to do whatever they want with them without any restriction,
|
||||
including, but not limited to, copying, modification and redistribution.
|
||||
NO WARRANTY OF ANY KIND IS PROVIDED.
|
||||
|
||||
This example reads a BME280 or BMP280 sensor and sends a valid LoRaWAN
|
||||
packet with the readings alongside the current input voltage, using
|
||||
frequency and encryption settings matching those of the The Things Network.
|
||||
|
||||
This uses OTAA (Over-the-air activation), where where a DevEUI and
|
||||
application key is configured, which are used in an over-the-air
|
||||
activation procedure where a DevAddr and session keys are
|
||||
assigned/generated for use with all further communication.
|
||||
|
||||
Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
|
||||
g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
|
||||
violated by this sketch when left running for longer)!
|
||||
|
||||
To use this sketch, first register your application and device with
|
||||
the things network, to set or generate an AppEUI, DevEUI and AppKey.
|
||||
Multiple devices can use the same AppEUI, but each device has its own
|
||||
DevEUI and AppKey.
|
||||
|
||||
Do not forget to define the radio type correctly in config.h.
|
||||
|
||||
*******************************************************************************/
|
||||
|
||||
#include <lmic.h>
|
||||
#include <hal/hal.h>
|
||||
#include <SPI.h>
|
||||
#include <BME280I2C.h>
|
||||
#include <Wire.h>
|
||||
#include <CayenneLPP.h>
|
||||
#include "config.h"
|
||||
|
||||
void os_getArtEui (u1_t* buf) {
|
||||
memcpy_P(buf, APPEUI, 8);
|
||||
}
|
||||
void os_getDevEui (u1_t* buf) {
|
||||
memcpy_P(buf, DEVEUI, 8);
|
||||
}
|
||||
void os_getDevKey (u1_t* buf) {
|
||||
memcpy_P(buf, APPKEY, 16);
|
||||
}
|
||||
|
||||
static osjob_t sendjob;
|
||||
|
||||
// Schedule TX every this many seconds (might become longer due to duty
|
||||
// cycle limitations).
|
||||
const unsigned TX_INTERVAL = 30;
|
||||
|
||||
const lmic_pinmap lmic_pins = {
|
||||
.nss = 4,
|
||||
.rxtx = LMIC_UNUSED_PIN,
|
||||
.rst = LMIC_UNUSED_PIN, // hardwired to AtMega RESET
|
||||
.dio = {12, 13, LMIC_UNUSED_PIN} // .dio = {4, 5, LMIC_UNUSED_PIN},
|
||||
};
|
||||
|
||||
CayenneLPP lpp(51);
|
||||
BME280I2C bme;
|
||||
|
||||
|
||||
// https://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
|
||||
long readVcc() {
|
||||
// Read 1.1V reference against AVcc
|
||||
// set the reference to Vcc and the measurement to the internal 1.1V reference
|
||||
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
||||
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
|
||||
ADMUX = _BV(MUX5) | _BV(MUX0);
|
||||
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
|
||||
ADMUX = _BV(MUX3) | _BV(MUX2);
|
||||
#else
|
||||
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
||||
#endif
|
||||
|
||||
delay(2); // Wait for Vref to settle
|
||||
ADCSRA |= _BV(ADSC); // Start conversion
|
||||
while (bit_is_set(ADCSRA, ADSC)); // measuring
|
||||
|
||||
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
|
||||
uint8_t high = ADCH; // unlocks both
|
||||
|
||||
long result = (high << 8) | low;
|
||||
|
||||
result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
|
||||
return result; // Vcc in millivolts
|
||||
}
|
||||
|
||||
void onEvent (ev_t ev) {
|
||||
Serial.print(os_getTime());
|
||||
Serial.print(": ");
|
||||
switch (ev) {
|
||||
case EV_SCAN_TIMEOUT:
|
||||
Serial.println(F("EV_SCAN_TIMEOUT"));
|
||||
break;
|
||||
case EV_BEACON_FOUND:
|
||||
Serial.println(F("EV_BEACON_FOUND"));
|
||||
break;
|
||||
case EV_BEACON_MISSED:
|
||||
Serial.println(F("EV_BEACON_MISSED"));
|
||||
break;
|
||||
case EV_BEACON_TRACKED:
|
||||
Serial.println(F("EV_BEACON_TRACKED"));
|
||||
break;
|
||||
case EV_JOINING:
|
||||
Serial.println(F("EV_JOINING"));
|
||||
break;
|
||||
case EV_JOINED:
|
||||
Serial.println(F("EV_JOINED"));
|
||||
|
||||
// Disable link check validation (automatically enabled
|
||||
// during join, but not supported by TTN at this time).
|
||||
LMIC_setLinkCheckMode(0);
|
||||
break;
|
||||
case EV_RFU1:
|
||||
Serial.println(F("EV_RFU1"));
|
||||
break;
|
||||
case EV_JOIN_FAILED:
|
||||
Serial.println(F("EV_JOIN_FAILED"));
|
||||
break;
|
||||
case EV_REJOIN_FAILED:
|
||||
Serial.println(F("EV_REJOIN_FAILED"));
|
||||
break;
|
||||
break;
|
||||
case EV_TXCOMPLETE:
|
||||
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
|
||||
if (LMIC.txrxFlags & TXRX_ACK)
|
||||
Serial.println(F("Received ack"));
|
||||
if (LMIC.dataLen) {
|
||||
Serial.println(F("Received "));
|
||||
Serial.println(LMIC.dataLen);
|
||||
Serial.println(F(" bytes of payload"));
|
||||
}
|
||||
/*Serial.print(F("Frequency: "));
|
||||
Serial.println(LMIC.freq);
|
||||
Serial.print(F("RSSI: "));
|
||||
Serial.println(LMIC.rssi);
|
||||
Serial.print(F("SNR: "));
|
||||
Serial.println(LMIC.snr);
|
||||
Serial.print(F("txpow: "));
|
||||
Serial.println(LMIC.txpow);*/
|
||||
Serial.print(F("adrTxPow: "));
|
||||
Serial.println(LMIC.adrTxPow);
|
||||
Serial.print(F("txChnl: "));
|
||||
Serial.println(LMIC.txChnl);
|
||||
Serial.println();
|
||||
// Schedule next transmission
|
||||
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send);
|
||||
break;
|
||||
case EV_LOST_TSYNC:
|
||||
Serial.println(F("EV_LOST_TSYNC"));
|
||||
break;
|
||||
case EV_RESET:
|
||||
Serial.println(F("EV_RESET"));
|
||||
break;
|
||||
case EV_RXCOMPLETE:
|
||||
// data received in ping slot
|
||||
Serial.println(F("EV_RXCOMPLETE"));
|
||||
break;
|
||||
case EV_LINK_DEAD:
|
||||
Serial.println(F("EV_LINK_DEAD"));
|
||||
break;
|
||||
case EV_LINK_ALIVE:
|
||||
Serial.println(F("EV_LINK_ALIVE"));
|
||||
break;
|
||||
default:
|
||||
Serial.println(F("Unknown event"));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void do_send(osjob_t* j) {
|
||||
// Check if there is not a current TX/RX job running
|
||||
if (LMIC.opmode & OP_TXRXPEND) {
|
||||
Serial.println(F("OP_TXRXPEND, not sending"));
|
||||
} else {
|
||||
float temp(NAN), hum(NAN), pres(NAN), voltage(NAN);
|
||||
|
||||
BME280::TempUnit tempUnit(BME280::TempUnit_Celcius);
|
||||
BME280::PresUnit presUnit(BME280::PresUnit_hPa);
|
||||
|
||||
// Read BME280/BMP280 sensor
|
||||
bme.read(pres, temp, hum, tempUnit, presUnit);
|
||||
|
||||
voltage = readVcc() / 1000.0 ;
|
||||
|
||||
// Build CayenneLPP message
|
||||
lpp.reset();
|
||||
lpp.addTemperature(1, temp);
|
||||
lpp.addRelativeHumidity(2, hum);
|
||||
lpp.addBarometricPressure(3, pres);
|
||||
lpp.addAnalogInput(4, voltage);
|
||||
|
||||
// Prepare upstream data transmission at the next possible time.
|
||||
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
|
||||
|
||||
Serial.println(F("Packet queued"));
|
||||
}
|
||||
// Next TX is scheduled after TX_COMPLETE event.
|
||||
}
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
Serial.println(F("Starting TTN Muc Sensor 4"));
|
||||
|
||||
Wire.begin();
|
||||
|
||||
while (!bme.begin()) {
|
||||
Serial.println("Could not find BME280 sensor!");
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
// LMIC init
|
||||
os_init();
|
||||
|
||||
// Reset the MAC state. Session and pending data transfers will be discarded.
|
||||
LMIC_reset();
|
||||
|
||||
// Let LMIC compensate for +/- 1% clock error
|
||||
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
|
||||
|
||||
// Start job (sending automatically starts OTAA too)
|
||||
do_send(&sendjob);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
os_runloop_once();
|
||||
}
|
||||
|
@ -1,223 +0,0 @@
|
||||
/*******************************************************************************
|
||||
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to anyone
|
||||
* obtaining a copy of this document and accompanying files,
|
||||
* to do whatever they want with them without any restriction,
|
||||
* including, but not limited to, copying, modification and redistribution.
|
||||
* NO WARRANTY OF ANY KIND IS PROVIDED.
|
||||
*
|
||||
* This example sends a valid LoRaWAN packet with payload "Hello,
|
||||
* world!", using frequency and encryption settings matching those of
|
||||
* the The Things Network.
|
||||
*
|
||||
* This uses OTAA (Over-the-air activation), where where a DevEUI and
|
||||
* application key is configured, which are used in an over-the-air
|
||||
* activation procedure where a DevAddr and session keys are
|
||||
* assigned/generated for use with all further communication.
|
||||
*
|
||||
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
|
||||
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
|
||||
* violated by this sketch when left running for longer)!
|
||||
* To use this sketch, first register your application and device with
|
||||
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
|
||||
* Multiple devices can use the same AppEUI, but each device has its own
|
||||
* DevEUI and AppKey.
|
||||
*
|
||||
* Do not forget to define the radio type correctly in config.h.
|
||||
*
|
||||
*******************************************************************************/
|
||||
|
||||
#include <lmic.h>
|
||||
#include <hal/hal.h>
|
||||
#include <SPI.h>
|
||||
#include <BME280I2C.h>
|
||||
#include <Wire.h>
|
||||
#include <CayenneLPP.h>
|
||||
#include <LowPower.h>
|
||||
#include "config.h"
|
||||
|
||||
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
|
||||
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
|
||||
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
|
||||
|
||||
static uint8_t mydata[] = "ping";
|
||||
static osjob_t sendjob;
|
||||
|
||||
// Schedule TX every this many seconds (might become longer due to duty
|
||||
// cycle limitations).
|
||||
const unsigned TX_INTERVAL = 30;
|
||||
|
||||
const lmic_pinmap lmic_pins = {
|
||||
.nss = 10,
|
||||
.rxtx = LMIC_UNUSED_PIN,
|
||||
.rst = LMIC_UNUSED_PIN, // hardwired to AtMega RESET
|
||||
.dio = {4,5,LMIC_UNUSED_PIN}// .dio = {4, 5, LMIC_UNUSED_PIN},
|
||||
};
|
||||
|
||||
CayenneLPP lpp(51);
|
||||
BME280I2C bme;
|
||||
|
||||
long readVcc() {
|
||||
// Read 1.1V reference against AVcc
|
||||
// set the reference to Vcc and the measurement to the internal 1.1V reference
|
||||
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
||||
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
|
||||
ADMUX = _BV(MUX5) | _BV(MUX0);
|
||||
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
|
||||
ADMUX = _BV(MUX3) | _BV(MUX2);
|
||||
#else
|
||||
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
||||
#endif
|
||||
|
||||
delay(2); // Wait for Vref to settle
|
||||
ADCSRA |= _BV(ADSC); // Start conversion
|
||||
while (bit_is_set(ADCSRA,ADSC)); // measuring
|
||||
|
||||
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
|
||||
uint8_t high = ADCH; // unlocks both
|
||||
|
||||
long result = (high<<8) | low;
|
||||
|
||||
result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
|
||||
return result; // Vcc in millivolts
|
||||
}
|
||||
|
||||
void onEvent (ev_t ev) {
|
||||
Serial.print(os_getTime());
|
||||
Serial.print(": ");
|
||||
switch(ev) {
|
||||
case EV_SCAN_TIMEOUT:
|
||||
Serial.println(F("EV_SCAN_TIMEOUT"));
|
||||
break;
|
||||
case EV_BEACON_FOUND:
|
||||
Serial.println(F("EV_BEACON_FOUND"));
|
||||
break;
|
||||
case EV_BEACON_MISSED:
|
||||
Serial.println(F("EV_BEACON_MISSED"));
|
||||
break;
|
||||
case EV_BEACON_TRACKED:
|
||||
Serial.println(F("EV_BEACON_TRACKED"));
|
||||
break;
|
||||
case EV_JOINING:
|
||||
Serial.println(F("EV_JOINING"));
|
||||
break;
|
||||
case EV_JOINED:
|
||||
Serial.println(F("EV_JOINED"));
|
||||
|
||||
// Disable link check validation (automatically enabled
|
||||
// during join, but not supported by TTN at this time).
|
||||
LMIC_setLinkCheckMode(0);
|
||||
break;
|
||||
case EV_RFU1:
|
||||
Serial.println(F("EV_RFU1"));
|
||||
break;
|
||||
case EV_JOIN_FAILED:
|
||||
Serial.println(F("EV_JOIN_FAILED"));
|
||||
break;
|
||||
case EV_REJOIN_FAILED:
|
||||
Serial.println(F("EV_REJOIN_FAILED"));
|
||||
break;
|
||||
break;
|
||||
case EV_TXCOMPLETE:
|
||||
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
|
||||
if (LMIC.txrxFlags & TXRX_ACK)
|
||||
Serial.println(F("Received ack"));
|
||||
if (LMIC.dataLen) {
|
||||
Serial.println(F("Received "));
|
||||
Serial.println(LMIC.dataLen);
|
||||
Serial.println(F(" bytes of payload"));
|
||||
}
|
||||
/*Serial.print(F("Frequency: "));
|
||||
Serial.println(LMIC.freq);
|
||||
Serial.print(F("RSSI: "));
|
||||
Serial.println(LMIC.rssi);
|
||||
Serial.print(F("SNR: "));
|
||||
Serial.println(LMIC.snr);
|
||||
Serial.print(F("txpow: "));
|
||||
Serial.println(LMIC.txpow);*/
|
||||
Serial.print(F("adrTxPow: "));
|
||||
Serial.println(LMIC.adrTxPow);
|
||||
Serial.print(F("txChnl: "));
|
||||
Serial.println(LMIC.txChnl);
|
||||
Serial.println();
|
||||
// Schedule next transmission
|
||||
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
|
||||
break;
|
||||
case EV_LOST_TSYNC:
|
||||
Serial.println(F("EV_LOST_TSYNC"));
|
||||
break;
|
||||
case EV_RESET:
|
||||
Serial.println(F("EV_RESET"));
|
||||
break;
|
||||
case EV_RXCOMPLETE:
|
||||
// data received in ping slot
|
||||
Serial.println(F("EV_RXCOMPLETE"));
|
||||
break;
|
||||
case EV_LINK_DEAD:
|
||||
Serial.println(F("EV_LINK_DEAD"));
|
||||
break;
|
||||
case EV_LINK_ALIVE:
|
||||
Serial.println(F("EV_LINK_ALIVE"));
|
||||
break;
|
||||
default:
|
||||
Serial.println(F("Unknown event"));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void do_send(osjob_t* j){
|
||||
// Check if there is not a current TX/RX job running
|
||||
if (LMIC.opmode & OP_TXRXPEND) {
|
||||
Serial.println(F("OP_TXRXPEND, not sending"));
|
||||
} else {
|
||||
float temp(NAN), hum(NAN), pres(NAN);
|
||||
|
||||
BME280::TempUnit tempUnit(BME280::TempUnit_Celsius);
|
||||
BME280::PresUnit presUnit(BME280::PresUnit_hPa);
|
||||
|
||||
bme.read(pres, temp, hum, tempUnit, presUnit);
|
||||
|
||||
float voltage = readVcc() / 1000.0 ;
|
||||
|
||||
lpp.reset();
|
||||
lpp.addTemperature(1, temp);
|
||||
lpp.addRelativeHumidity(2, hum);
|
||||
lpp.addBarometricPressure(3, pres);
|
||||
lpp.addAnalogInput(4, voltage);
|
||||
// Prepare upstream data transmission at the next possible time.
|
||||
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
|
||||
Serial.println(F("Packet queued"));
|
||||
}
|
||||
// Next TX is scheduled after TX_COMPLETE event.
|
||||
}
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
Serial.println(F("Starting TTN Muc Cayenne Sensor 1"));
|
||||
|
||||
while(!bme.begin())
|
||||
{
|
||||
Serial.println("Could not find BME280 sensor!");
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// LMIC init
|
||||
os_init();
|
||||
|
||||
// Reset the MAC state. Session and pending data transfers will be discarded.
|
||||
LMIC_reset();
|
||||
|
||||
// Let LMIC compensate for +/- 1% clock error
|
||||
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
|
||||
|
||||
// Start job (sending automatically starts OTAA too)
|
||||
do_send(&sendjob);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
os_runloop_once();
|
||||
}
|
Loading…
Reference in New Issue
Block a user