236 lines
7.0 KiB
C++
236 lines
7.0 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
|
|
Copyright (c) 2019 Severin Schols
|
|
|
|
Permission is hereby granted, free of charge, to anyone
|
|
obtaining a copy of this document and accompanying files,
|
|
to do whatever they want with them without any restriction,
|
|
including, but not limited to, copying, modification and redistribution.
|
|
NO WARRANTY OF ANY KIND IS PROVIDED.
|
|
|
|
This example reads a BME280 or BMP280 sensor and sends a valid LoRaWAN
|
|
packet with the readings alongside the current input voltage, using
|
|
frequency and encryption settings matching those of the The Things Network.
|
|
|
|
This uses OTAA (Over-the-air activation), where where a DevEUI and
|
|
application key is configured, which are used in an over-the-air
|
|
activation procedure where a DevAddr and session keys are
|
|
assigned/generated for use with all further communication.
|
|
|
|
Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
|
|
g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
|
|
violated by this sketch when left running for longer)!
|
|
|
|
To use this sketch, first register your application and device with
|
|
the things network, to set or generate an AppEUI, DevEUI and AppKey.
|
|
Multiple devices can use the same AppEUI, but each device has its own
|
|
DevEUI and AppKey.
|
|
|
|
Do not forget to define the radio type correctly in config.h.
|
|
|
|
*******************************************************************************/
|
|
|
|
#include <lmic.h>
|
|
#include <hal/hal.h>
|
|
#include <SPI.h>
|
|
#include <BME280I2C.h>
|
|
#include <Wire.h>
|
|
#include <CayenneLPP.h>
|
|
#include "config.h"
|
|
|
|
void os_getArtEui (u1_t* buf) {
|
|
memcpy_P(buf, APPEUI, 8);
|
|
}
|
|
void os_getDevEui (u1_t* buf) {
|
|
memcpy_P(buf, DEVEUI, 8);
|
|
}
|
|
void os_getDevKey (u1_t* buf) {
|
|
memcpy_P(buf, APPKEY, 16);
|
|
}
|
|
|
|
static osjob_t sendjob;
|
|
|
|
// Schedule TX every this many seconds (might become longer due to duty
|
|
// cycle limitations).
|
|
const unsigned TX_INTERVAL = 30;
|
|
|
|
const lmic_pinmap lmic_pins = {
|
|
.nss = 4,
|
|
.rxtx = LMIC_UNUSED_PIN,
|
|
.rst = LMIC_UNUSED_PIN, // hardwired to AtMega RESET
|
|
.dio = {12, 13, LMIC_UNUSED_PIN} // .dio = {4, 5, LMIC_UNUSED_PIN},
|
|
};
|
|
|
|
CayenneLPP lpp(51);
|
|
BME280I2C bme;
|
|
|
|
|
|
// https://provideyourown.com/2012/secret-arduino-voltmeter-measure-battery-voltage/
|
|
long readVcc() {
|
|
// Read 1.1V reference against AVcc
|
|
// set the reference to Vcc and the measurement to the internal 1.1V reference
|
|
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
|
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
|
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
|
|
ADMUX = _BV(MUX5) | _BV(MUX0);
|
|
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
|
|
ADMUX = _BV(MUX3) | _BV(MUX2);
|
|
#else
|
|
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
|
|
#endif
|
|
|
|
delay(2); // Wait for Vref to settle
|
|
ADCSRA |= _BV(ADSC); // Start conversion
|
|
while (bit_is_set(ADCSRA, ADSC)); // measuring
|
|
|
|
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
|
|
uint8_t high = ADCH; // unlocks both
|
|
|
|
long result = (high << 8) | low;
|
|
|
|
result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
|
|
return result; // Vcc in millivolts
|
|
}
|
|
|
|
void onEvent (ev_t ev) {
|
|
Serial.print(os_getTime());
|
|
Serial.print(": ");
|
|
switch (ev) {
|
|
case EV_SCAN_TIMEOUT:
|
|
Serial.println(F("EV_SCAN_TIMEOUT"));
|
|
break;
|
|
case EV_BEACON_FOUND:
|
|
Serial.println(F("EV_BEACON_FOUND"));
|
|
break;
|
|
case EV_BEACON_MISSED:
|
|
Serial.println(F("EV_BEACON_MISSED"));
|
|
break;
|
|
case EV_BEACON_TRACKED:
|
|
Serial.println(F("EV_BEACON_TRACKED"));
|
|
break;
|
|
case EV_JOINING:
|
|
Serial.println(F("EV_JOINING"));
|
|
break;
|
|
case EV_JOINED:
|
|
Serial.println(F("EV_JOINED"));
|
|
|
|
// Disable link check validation (automatically enabled
|
|
// during join, but not supported by TTN at this time).
|
|
LMIC_setLinkCheckMode(0);
|
|
break;
|
|
case EV_RFU1:
|
|
Serial.println(F("EV_RFU1"));
|
|
break;
|
|
case EV_JOIN_FAILED:
|
|
Serial.println(F("EV_JOIN_FAILED"));
|
|
break;
|
|
case EV_REJOIN_FAILED:
|
|
Serial.println(F("EV_REJOIN_FAILED"));
|
|
break;
|
|
break;
|
|
case EV_TXCOMPLETE:
|
|
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
|
|
if (LMIC.txrxFlags & TXRX_ACK)
|
|
Serial.println(F("Received ack"));
|
|
if (LMIC.dataLen) {
|
|
Serial.println(F("Received "));
|
|
Serial.println(LMIC.dataLen);
|
|
Serial.println(F(" bytes of payload"));
|
|
}
|
|
/*Serial.print(F("Frequency: "));
|
|
Serial.println(LMIC.freq);
|
|
Serial.print(F("RSSI: "));
|
|
Serial.println(LMIC.rssi);
|
|
Serial.print(F("SNR: "));
|
|
Serial.println(LMIC.snr);
|
|
Serial.print(F("txpow: "));
|
|
Serial.println(LMIC.txpow);*/
|
|
Serial.print(F("adrTxPow: "));
|
|
Serial.println(LMIC.adrTxPow);
|
|
Serial.print(F("txChnl: "));
|
|
Serial.println(LMIC.txChnl);
|
|
Serial.println();
|
|
// Schedule next transmission
|
|
os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), do_send);
|
|
break;
|
|
case EV_LOST_TSYNC:
|
|
Serial.println(F("EV_LOST_TSYNC"));
|
|
break;
|
|
case EV_RESET:
|
|
Serial.println(F("EV_RESET"));
|
|
break;
|
|
case EV_RXCOMPLETE:
|
|
// data received in ping slot
|
|
Serial.println(F("EV_RXCOMPLETE"));
|
|
break;
|
|
case EV_LINK_DEAD:
|
|
Serial.println(F("EV_LINK_DEAD"));
|
|
break;
|
|
case EV_LINK_ALIVE:
|
|
Serial.println(F("EV_LINK_ALIVE"));
|
|
break;
|
|
default:
|
|
Serial.println(F("Unknown event"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
void do_send(osjob_t* j) {
|
|
// Check if there is not a current TX/RX job running
|
|
if (LMIC.opmode & OP_TXRXPEND) {
|
|
Serial.println(F("OP_TXRXPEND, not sending"));
|
|
} else {
|
|
float temp(NAN), hum(NAN), pres(NAN), voltage(NAN);
|
|
|
|
BME280::TempUnit tempUnit(BME280::TempUnit_Celcius);
|
|
BME280::PresUnit presUnit(BME280::PresUnit_hPa);
|
|
|
|
// Read BME280/BMP280 sensor
|
|
bme.read(pres, temp, hum, tempUnit, presUnit);
|
|
|
|
voltage = readVcc() / 1000.0 ;
|
|
|
|
// Build CayenneLPP message
|
|
lpp.reset();
|
|
lpp.addTemperature(1, temp);
|
|
lpp.addRelativeHumidity(2, hum);
|
|
lpp.addBarometricPressure(3, pres);
|
|
lpp.addAnalogInput(4, voltage);
|
|
|
|
// Prepare upstream data transmission at the next possible time.
|
|
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0);
|
|
|
|
Serial.println(F("Packet queued"));
|
|
}
|
|
// Next TX is scheduled after TX_COMPLETE event.
|
|
}
|
|
|
|
void setup() {
|
|
Serial.begin(9600);
|
|
Serial.println(F("Starting TTN Muc Sensor 4"));
|
|
|
|
Wire.begin();
|
|
|
|
while (!bme.begin()) {
|
|
Serial.println("Could not find BME280 sensor!");
|
|
delay(1000);
|
|
}
|
|
|
|
// LMIC init
|
|
os_init();
|
|
|
|
// Reset the MAC state. Session and pending data transfers will be discarded.
|
|
LMIC_reset();
|
|
|
|
// Let LMIC compensate for +/- 1% clock error
|
|
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
|
|
|
|
// Start job (sending automatically starts OTAA too)
|
|
do_send(&sendjob);
|
|
}
|
|
|
|
void loop() {
|
|
os_runloop_once();
|
|
}
|
|
|